Showing posts with label mesoscale convective system. Show all posts
Showing posts with label mesoscale convective system. Show all posts

Friday, August 23, 2019

Why wasn't a tornado warning issued?


I’ve seen several very recent discussions about why NWS Albany didn't issue or were late to issue a tornado warning on Wednesday's storms.  It always seems many are eager to go into a National Weather Service-bashfest.

First of all how does the warning process develop?

It starts with the Storm Prediction Center (SPC) located in Norman, Okla. The SPC is the  one who determines when a tornado watch will be issued, and where and which  counties will be included.  The SPC will communicate with the local NWS field offices involved in the watch area. After this, the tornado watch is issued.

 Once the watch has been issued, it’s up to the local field office to expand it or cancel it all together, if they think the watch is unnecessary. If there is a need for a severe thunderstorm to be warned, that is up to the local National Weather Service. It is also up to the local field office to issue a tornado warning if the conditions in the storm in question warrant it.

There are many reasons why tornadoes can go unwarned. Here are the major reasons.

 1)  I've been inside the Storm Prediction Center, National Severe Storms Laboratory, and a few local NWS field offices. Everyone in these places works hard and has long hours...this is especially true for the local NWS operational forecasters. They are often understaffed and their shifts are long,. For over a week the Northeast has had a lot of severe weather; when it is like this, the forecasters can work 80 hour  weeks or longer. .So it's not uncommon that forecasters can become significantly fatigued on their shifts. This can lead to human mistakes and errors. that lead to missing things including a potential tornado.

2)  In 2013 the NWS intruded changes in an effort to reduce false alarms.   The changes included both technological and how personal react. The radar algorithms work differently to allow for minute by minute input of observations. The goal of lessening false alarms means that forecasters wait until higher confidence exists before issuing warnings in order to decrease the chance they could be wrong.  Many times NWS forecasters now wait until a tornado has begun before issuing a warning more often than prior to this new policy, As radar technology get better and better,  more low key, generally weaker tornadoes are seen than ever before. These newly visible low-end tornado signatures on radar initiate low levels of confidence for forecasters trying to pick out which signatures features on radar are tornadoes, and which are not. These minor tornado possibilities often do not get warned due to lower confidence.


3)  . Sometimes, the radar simply cannot see them. The Earth's curvature causes radar beams to slope upward after they travel a lengthy distance. This may cause the radar beam to cut through the top of a storm. As a result it is often too high to discern if the storm is rotating.
 

4) Most of y'all know that traditional tornadoes develop from a rotating thunderstorm (also known as a mesocyclone) When a thunderstorm has a deep persistent rotating updraft they are called a supercell thunderstorm. Most of the time a traditional tornado will drop out of a wall cloud under the parent thunderstorm and lower to the ground. Once it touches the ground it is called a tornado.  Sometimes, tornadoes develop from the ground up. This type of tornado is called a landspout.

5)  A landspout requires a towering cumulus cloud to be present over a boundary of converging winds near the ground. This is typically found along a cold front or a gust front. The converging winds  from different directions collide with each other; this results in a small area of spin. sometimes this spinning vortex of air will reach the base of the cloud, once that occurs a landspout tornado is born. Landspouts are typically weaker and shorter lived than their traditional cousins.  Landspout tornadoes typically last only a few minutes; since a doppler Radar scan normally takes 4-6 minutes; the landspout could have formed and dissipated before the scan was completed.   Because radar can’t see rotation at ground level, many times a landspout can go undetected. When dealing with landspouts a tornado warning is often instituted late if at all.
 
 

6) Then there are QLCS tornadoes. When thunderstorms become organized, they are called a Mesoscale Convective System (MCS) A QLCS (Quasi Linear Convective System) is a type of MCS, where the complex of thunderstorms form a squall line. They typically form along a cold front. The armchair meteorologist reading this, know the squall line contains heavy rain, strong gusty winds, frequent lightning, and hail.  Sometimes brief little spin ups can occur along the leading edge of the squall line, .  These spin ups are called QLCS tornadoes. This type of tornado is often short lived and  weaker than traditional tornadoes, but not always. While  they can form and dissipate quickly and be hard to detect, they aren't landspout tornadoes.  This is because they form differently.  For a QLCS, as the cold front advances, it lifts warm air out ahead of it. which in turn forms the rain line, as the squall line develops the rain cools the warm air causing it to sink. This creates what is called a cool pool. The cool pool produces strong winds. These winds cause the squall line to bow out.  The cold and dense winds from the bowing line forces warm air to rise (loft); this process empties the space behind the bow, allowing a small area of low pressure to form. This area of low pressure draws in drier air above the squall line.  This process continues as everything develops and accelerates. This results in a tilted updraft to form over the top of the cold pool.  As this escalates a rear inflow jet forms.  As the process rapidly intensifies, vertical stretching of the updraft, which can lead to tornado formation.  Sometimes tornadoes can form within a subtle weak echo region on the forward flank of the bow containing high precipitation supercell characteristics.  There can also be so called bookend circulations at the tips of the bow echo that can also lead to Tornado occurrence.  QLCS tornadoes are most likely to form when the bow is intensifying.  QLCS tornadoes are difficult to detect and often can go unwarned.
 
 
 

7) Technical difficulties. Radar outages, communication outages, power surges/outages, and thunderstorms near or over the radar site, and terrain issues can cause problems.

There are other reasons a tornado can go unwarned....But this is why all warnings should be taken seriously. Far too many take severe thunderstorm warnings lightly.  I've seen this attitude lead to injury and death.  All severe thunderstorms are capable of producing a tornado in the right environment.  So never let your guard down, when a severe thunderstorm is approaching.
 
 
 

Sunday, May 29, 2011

Types of thunderstorms

     In this segment, I will go into a little more detail on a subject that is on everyone's minds lately... thunderstorms.  There are four main types of thunderstorms, single cell, multicell clusters, squall lines, and the infamous supercell. The difference between the types of thunderstorms has nothing to do with their lifecycle. instead it has to do with the amount of cells in the thunderstorm and how they are positioned.  Now, I'm sure someone is saying ...So what, there are four kinds,  why should I care? I feel having a better understanding of the various types of thunderstorms can help you distinguish between severe and non-severe thunderstorms, this will help you keep yourself and your family safe.

The single-cell

    A single cell thunderstorm also can go by two other names: A pulse thunderstorm or an airmass thunderstorm. This type of storm only has one main updraft.  It's a thunderstorm that goes through  its life cycle and dissipates without creating any other cells, the term "cell" refers to the number of principal updraft points in the storm. Single-cell thunderstorms usually last between 20-30 minutes. They are usually poorly organized and seem to occur at random times and locations, making them difficult to forecast. Single-cells are rarely severe, They may contain heavy rain and can also produce occasional downbursts, small hail, and (rarely) weak tornadoes, storm chasers call these kind of tornadoes landspouts, but these are very rare in single cell storms. However, there is a special class of single cell that is always severe, I will discuss this special class later.



                                                                         Single cell thunderstorm

 
Multicell Cluster Thunderstorms:
     Multicell thunderstorms are groups of cells adjacent to one another that move together, which are all in different stages of the lifecycle.  Because they are in different stages of development they have a much longer life span that a single-cell. In my last blog post I talked about a thunderstorms lifecycle; in a multi-cell it works the same way, with a slight twist. Here's how it works.  As cumulus develop, one of the cumulus begins to grow faster than the other cumulus; eventually it will  produce some light precipitation. As this precipitation and corresponding downdraft descends it cools the air around it (evaporative cooling). The evaporative cooling accelerates the downdraft, as the downdraft hits the ground it spreads outward. Sometimes this outward movement of air can act as a wedge as the colder out flowing air undercuts the warm moist air in the regions surrounding the main cell. This can have the effect of intensifying updrafts in the surrounding cells nearby. In-turn, These cells move into their mature stage as the new cell  sends down precipitation it becomes the dominant cell. Simultaneously, the newer cell produces downdrafts that stops the updraft of the original cell. This cycle will keep going as long as atmospheric conditions allow it. If you've ever watched on radar when there is a lot of thunderstorm; you might have noticed a group of cells will be moving one way, then all of a sudden move in another. This is because of the unusual structure of multicells. This happens, because the developing and dissipating process causes the storm to have a motion veering slightly at an angle to each cells line of motion. On average, multicell cluster storms last for about 20-30 minutes, however the whole line may persist for several hours. Multicell thunderstorms can become severe. All types of severe weather can be experienced from severe multicells including giant hail, severe winds and tornadoes.
                                                                 Image of  multicell cluster thunderstorms


Squall lines:

     Squall line thunderstorms can also be called multicell line storms. These systems of thunderstorms arranged in a line. Sometimes this line can extend laterally for hundreds of miles. At first glance, a squall line looks like a long system of multicell thunderstorms, with cells developing on one end and dissipating on the other. However, the storm looks like on large thunderstorm with a large anvil extending well ahead of the main body. The approach of a squall line is a astounding sight. As it approaches, the observer will normally see a very dark shelf cloud with an extensive precipitation cascade. A shelf cloud is a low, horizontal wedge-shaped cloud. that  is attached to the base of the parent cloud.  If you're facing the squall line a strong warm wind will form at your back, this is the inflow updraft feeding the storm. As the squall line gets close, there will be a  brief lull in the wind soon to be replaced with a sudden blast of wind from the storm in the opposite direction. this is the outflow downdraft. Sometimes Bow echoes can form within squall lines,  bringing with them even higher winds. Bow echoes get their name because of what they look like on weather radar. A bow echo brings with it very high and often damaging winds. An unusually powerful type of squall line is called a derecho, this an very  intense squall line that travels for several hundred miles. There is one more thing I should mention. Some of you  may have heard the term mesoscale convective system (MCS);  an MCS is just a fancy name for is a complex of thunderstorms that becomes very organized on a scale that can impact several states at the same time. squall line systems often form within a  MCS. Now on to the last type of thunderstorm.



                                                                                                                A shelf cloud


                                                                                       Radar image of bow echoes


The Supercell:

                This is the special class of single cell thunderstorm I mentioned above. Supercell thunderstorms are the largest and the most severe of all types of thunderstorms. Most of the large tornadoes and giant hail events you've heard about over the last month were spawned by supercells.  The reason why supercells are the most severe is because of their rotating structure.  when a thunderstorm spins it is called a mesocyclone. A mesocyclone is basically an area of extremely strong updrafts which spin as the air moves upwards.  The supercells are one of nature's most destructive but beautiful constructs.  I think I will stop for today. There are two main types  of supercells that I will explain in the next installment.





                                                                                              A supercell in Oklahoma
 
     I hope you found this post both enjoyable and informative. I feel, the more you understand about the weather; the more you will be able to appreciate the wonder and beauty of nature. Even though thunderstorms can be destructive they are also very beautiful at the same time.
Rebecca Ladd.